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REPORT No. 213

A RESUME OF THE ADVANCES IN THEORETICAL AERONAUTICS
MADE BY MAX M. MUNK

By JoserE S. AuEs

INTRODUCTION

In order to apply profitably the mathematical methods of hydrodynamies to aeronautical
problems, it is necessary to make certain simplifications in the physical conditions of the latter.
To begin with, it is allowable in many problems, as Prandt] has so successfully shown, to treat
the air as having constant density and as free of viscosity. But this is not sufficient. It is
also necessary to specify certain shapes for the solid bodies whose motion through the air is
discussed, shapes suggested by the actual solids—airships or airfoils —it is true, but so chosen
that they lead to solvable problems.

In a valuable paper presented by Dr. Max M. Munk, of the National Advisory Committee
for Aeronautics, Washington, before the Delft Conference in April, 1924, these necessary sim-
plifying assumptions are discussed in detail. It is the purpose of the present paper to present
in ss simple & manner &s possible some of the interesting results obtained by Dr. Munk’s
methods. For fuller details and a discussion of many practical questions reference should be
made to Munk’s original papers: :

1. The Aerodynamic Forces on Airship Hulls. N. A. C. A. Report No. 184, 1924.

2. Elements of the Wing Section Theory and of the Wing Theory. N. A. C. A. Report No. 191, 1824,

3. Remarks on the Pressure Distribution Over the SBurface of an Ellipsoid, Moving Translationally
Through a Perfect Fluid. N. A. C. A. Technical Note No. 196, 1924.

4. The Minimum Induced Drag of Aerofoils. N. A. C. A. Report No. 121, 1921,

5. General Theory of Thin Wing Sections. N. A. C. A. Report No. 142, 1922,

6. Determination of the Angles of Attack of Zero Lift and of Zero Moment, Based on Munk’s Integrals.

N. A. C. A. Technical Note No. 122, 1923.
7. General Biplane Theory. N. A. C. A. Report No. 151, 1922.

GENERAL PRINCIPLES OF HYDRODYNAMICS

In ell the practical problems to be discussed, only the most general principles of hydro-
dynamics are used and in practically all cases the problems are reduced to questions involving
only energy and momentum. It may be worth while to deduce the few equations necessary,
although they are given in every textbook.

Since air is a fluid, the pressure is everywhere perpendicular to any surface through which
it is transferred. If u, v, w are components of the velocity of flow at any point,

ou  Ov  Oow
a+a—y+¥=

since the density is considered to be constant. The entire energy of the flow is kinetic, and
therefore

0,
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where dr is an element of volume of the fluid. By Newton’s law of motion

) %? dz dy dz=[p—(p+gi; d.’c):l dy dz= —%E dz dy dz
or
du_ 2
Pat™ oz
This may be written

The impulse per unit area in the time d¢ is, by definition, pdf. So the infinitesimal change
in velocity du can be considered as produced by the infinitesimal impulse pdt, and a finite
velocity % may be considered as produced from a state of rest by the finite impulse P=/ pdt
where, then

2
p»u’__..a? r— e e .
or
d( P
Y=3z\"%

Similarly, the other two components of the velocity of flow at any point will be defined by

”—by< P) %

Op  Op bcp
U= V"5 V"o

are called ‘“‘potential flows,” and ¢ is called the ‘‘velocity potential.” In this case, when the
flow is considered as produced by an impulse, P,

Flows such as this, where

PR

e e SO At R N cvapl § )

p=—=
P

or, the impulse per unit area, equals — pp.
There are cases of potential flow in which ¢ is not a single-valued function, and in such

Pe=—p (0= ) e e e e - (10)
where ¢, and ¢, are the values of ¢ at the same point. Since ¢,—¢,= J; ’ (udz +vdy + wdz),

if ; and , refer to the same point, the integral is called the ‘‘circulation,” and, if its value is
py the equation may be written P = +pu, where P is in the direction of the flow.
As an illustration, consider the flow discussed Iater equation (41), in which, for any point
on the axis of z,
e=A,sin r

The flow is a two-dimensional one, as shown in the figure. Consider an imaginary surface
at z, baving a minute length along the axis of « and unit length perpendicular to the plane
of the paper. Let the point I be on the lower side of the surface and the point 2 on the upper.
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Fic. 1

2
‘P:—%:ﬁ do=28r 4,

when the points approach each other indefinitely. The impulse per unit area at the point !
is —pe, and its action is downward, being perpendicular to the fluid surface below the imagi-
nary surface; at the point 2 the impulse per unit area is —pg,, acting upward, since it is
perpendicular to the fluid surface above the imaginary surface. Therefore the total impulse
per unit ares acting downward on the fluid is

P=p (¢,—0,) =por A,

Again, since : -
ou , v, dw
S + b_y + rrhe g,
» must satisfy everywhere in the fluid the equation
Q% , % D%
5z toyit om0

Making use again of Newton’s equation, and taking into account the fact that, in general,
u, v, and w are functions of (¢, «, 9, 2), the general equations of motion are

du_du  Odu, Ou,  du_ 1dp
E—a-{-u B;'I“U a—y+w $=~—; >%

and two similar ones for %’ and %—;

But .
dy oz dz Oz ' e
since
_Op Op a_ga.
u—a: ‘D=‘E'! ‘w—az,
therefors
ou  Ou ., dw__ 13dp
—a—t+u a—z+v a—z-[-w 55=—‘; o1
or
O (Op\,1 O __lop
> a)'!-g 52 4+ +u?) ="
with two similer equations fory and 2. On integration, these three equations give
aai:+% P+ uP) = -—i—’+ a constant.
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Written differently,

p=-—0>o %‘f+ 0—— (W +v* +w?)

In the case of a steady state %if=0, and

=0—§ Oy Y )

which is Bernouilli’s famous theorem. If there is a portion of space in which the fluid is at rest,
the pressure there equals €.

The work done by an impulse is proved in mechamcs to be the product of the 1mpulse by the
average of the initial and final velocities in the direction of the impulse. If a solid is moving
through a fluid otherwise at rest, and if the existing fluid motion is considered as having been pro-
duced from rest by impulses applied by the surface of the body, the velocity normal to any

element of surface is % where dn is drawn from the body into the fluid, and the mean value of
this and the initial zero velocity is % %; further, the impulse, normal to the surface dS, acting on
the fluidis —pe - dS. Therefors, the kinetic energy of the fluid is

T= ——f ¥ 8, taken over the surface of the solid body.............(3)

Other general principles will be discussed as the occasion arises.

PROBLEMS MORE SPECIALLY CONCERNING AIRSHIPS
INTRODUCTION

The fundamental problems concerning airships are: (1) the determination of the moments
acting on them under varying conditions of flight; (2) the determination of the distribution of
transverse forces; (3) the distribution of pressure over the envelope.

These problems can be solved, at Ieast. approxmmtely, by the application of certain general
theorems.

When & body moves through a fluid otherwise at rest, there is a certain amount of kinetic
energy of the fluid caused by the motion of the body. If the latter is moving with a velocity V
in a definite direction, if T'is the kinetic energy of the fluid due to the motion of the body, and if

p is the density of the fluid, by definition Tﬂ is called the “apparent additional mass” of the
7V’
body for motion in that-particular direction, and is written X p.

As an illustration, consider an infinitely long circular cylinder moving transversely in a
definite direction with a velocity V. Choose this direction as the axis for a set of polar coordi-
nates whose origin is on the axis of the moving cylinder. The velocity of any particle of the fluid
will be in a plene perpendlcular to the axis of the cylinder, so the flow is called two-dimensional, or
uniplanar. A particle in contact with the cylinder must have the same component of velocu:y
normal to the cylinder as the wall of the cylinder at that point. So, if r and ¢ are the polar
coordinates of any point of the fluid in a particular transverse plane, and if B is the radius of
the cylinder, this condition may be expressed by writing

(br T_R=-V cos B,

if 6, denotes the point on the cylinder. This leads at—once to the value of ¢ for any point in
the fluid, », 8, viz '
_VER*cos

P
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for it may be proved that this satisfies both

Ol O _
2oy

and the condition just expressed for the surface of the cylinder. Hence the kinetic energy of
flow

d.
T=—% o7 dS

becomes, since at r=R, o= — V& cos 6, g_i;= V cos 8, and dS=Rdb,k, where F is any length
desired of the cylinder,
=2 PR f "eost 6, dop=2 V'x Fh
-]

Consequently the apparent additional mass is

£ —or Bh

_ A

i. e, is the mass of the fluid displaced by the cylinder. This is sometimes expressed, with

reference to the two-dimensional flow, by saying thet the “apparent mass of a circle is pxE~”
It will be proved later that if a plane lamina infinite in length and of width & is moving

transversely with a velocity V, the flow being again two dimensional, the apparent additional

mass of a length % of the lamina is px (%)’h (the same as for a circular cylinder whose diameter

is b.) So the apparent transverse mass of a straight line of length b is px (%): in a two-dimen-

sional flow, this really being the apparent mass of a portion of length unity of an infinitely long
lamina whose width is b.

If & body is moving in a definite direction with a constant velocity, the flow accompanies
the body, so that the kinetic energy does not change, therefore there is no drag, which would
absorb energy. Further, if the flow gives rise to & single-valued velocity potential, there is no
lift. .(See & later section.) But although, therefore, the resultant force is zero, there may be
a moment acting on the body.

This may best be seen by a consideration of the momentum of the flow. When the body
is moving with the velocity V in a definite direction, let there be a component of momentum
of flow perpendicular to this direction and let its amount be ApV. Then, with reference to
any axis perpendicular to the plane including the line of velocity and the direction of the com-
ponent of momentum, there is a certain moment of momentum; and, as the body moves a dis-
tance Vin a unit time, this moment of momentum increases in that time by an amount V- 4pV.
An equal but opposite moment around the specified axis must, therefore, be acting on the body.
Hence, moment=velocity of body X component of momentum of flow perpendicular to the
axis of the moment and to the direction of the velocity. The “sense” of the moment is easily
seen.
Conversely, if the body does not experience any moment, the momentum of the flow must
be entirely in the line of motion of the body.

If a solid body is held stationary in a uniform flow, the kinetic energy of the entire infinite
flow is of course infinite, but less than it would be if the body were absent, owing to two reasons:
(1) The solid displaces an equal volume of the fluid, which otherwise would be in motion; (2) the
velocity of the flow is reduced in front of and behind the body. This decrease in kinetic energy
for a definite velocity of flow equals the kinetic energy of the total flow if the solid is moving
in a stationary fluid with the same velocity as the velocity of flow in the first case.
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When the solid is at rest in & uniform flow, let-it be turned slightly through an angle da
about a definite axis; if there is a moment about this axis acting on the body in such a sense
that it opposes the rotation da, work will be required to turn the body, and the kinetic energy
of the fluid, 7", will increase by an amount equal to the product of this moment and the angular
displacement. Similarly, if the moment is in the same sense as da,—dT"= Mda. Therefore,
if now the body is moving through a stationary fluid, Mda=dT, since dT= —dT’. Hence

M=ggj;-;.'i O R - SRR (: )

where M is the moment acting on the body around a definite axis, in the same “sense’ as da,
the angular displacement around this axis.

If, therefore, for a given direction of motion, T'is a maximum, a slight change da would result
in & decrease of T, and M would be negative, indicating a moment acting on the body in such a
sense as to oppose the change da. Such & direction of motion would therefore be one of stable
equilibrium. Similarly, if T is 2 minimum for a given line of motion, there is unstable equi-
librium.

In general,if any motion is generated from rest by an impulse, the work doneequalsthe prod-
uct of the impulse by half the component of the velocity in the direction of the impulse. The
impulse equals the momentum; therefore, the kinetic energy equals one-helf the scalar product
of the momentum and the velocity. This theorem may be applied to the fluid motions produced
by the motion of solids through them. ' e '

A body gives rise to a definite kinetic energy of lowif it has a constant velocity in a specified
direction; and, if its motion is reversed, it will give rise to the same amount, because the flow at
each point of the fluid is reversed. (This is evident because the effect of the presence of the
solid body when at rest in & stream of fluid may be duplicated by a certain distribution of
sources and sinks, giving rise to the same field of velocity potential as before, outside the space -
previously occupied by the solid; then, if the stream is reversed and each source is made into a
sink of an equal strength and vice versa, the potential field is exactly reversed, so that the
velocity at each point is reversed.) The kinetic energy is different for directions of motion other
than as specified, but it is always a positive number. Therefore, as the orientation of the line
of motion of the body is changed from some definite one to its opposite, there must be two
lines of motion—somewhere between—for one of which the kinetic energy is & maximum and
for the other of which it is & minimum. For motion in either of these directions, therefore,
8T'=0; that is, for any small angular displacement éa around an axis perpendicular to the
direction of motion 87=0. Consequently there is no moment acting on the body if it is moving
in either of these two directions; and the body may therefore be said to be in equilibrium,
stable if 7'is.a maximum and unsteble if T is a minimum.

Let a body be moving with a velocity V in such a direction that it is in equilibrium; call
the direction 4. The momentum of the flow must be in the same direction, otherwise there

4

Fia. 2

would be a moment; call its value EpV. Keeping the orientation of the body unchanged,
make the line_of motion with the velocity V perpendicular to 4, i. e. along B; let the com-
ponent along B of the momentum of the flow be called CpV, its component along 4 be called
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DpV, and its component perpendlcular to the plane of 4 and B be called EpV. Agaln, let its line
of motion with velocity V be in the plane of  and B, making an angle « with 4. Then the
momentum along 4, which may be written @,, has the value _

G,=KpV cos a+DpVsin a. Similarly, along B
@y=CpV sin a; and, perpendicular to the plane of 4B,
Gia=EpVsin a

Vi=Vecosa
Veo=Vsinea
V=0

Consequently the kinetic energy of the flow, which equals one-half the scalar produet of the
momentum and the velocity, is given by the equation

also

=% V2 (K, cos? a+ C'sin? a+ D _sin « cos a)

Under these circumstances the moment acting on the body a,round an axis perpendicular to the
plane of 4 and B is :
aTr »p

M_ZZ_ =5 V2 (((— K)) sin 2o+ D cos 2a)

But if =0, M=0, since 4 is a line of equilibrium, thereforse D=0. Consequently, when the
body is moving in a d1rect10n B at right angles to A—a line of equilibriurm, there is & component
of momentum Cp¥ along B and a component EpV perpendicular to the plane of 4 and B, but

none parallel to 4. If the body is now rotated about the line A, through 180°, and ao-a.m set -

moving along B with a velocity V, the momentum will have a component of momentum CpV
along B, and a component—Eprerpendmula.r to the plane 4 and B. Therefore, as the body
is rotated about A as an axis, there must be some definite orientation such that, for a velocity
along B, the component of momentum perpendicular to the plane of 4 and Bis zero. For this
orientation, then, the momentum is entirely along B. Therefore, the present location of 4 and B
with reference to the body are what may be called “axes of equilibrium.” They are at right
angles to each other. Similarly, it will be possible to find & third axis of equilibrium which is
perpendicular to the other two. Every body possesses, therefore, three mutually perpendicular
axes of equilibrium, and, in general, no more. Let the apparent additional masses with reference
to these three axes be called Kp, Kp, Kp; that is, if V,, V,, V, are the components of ¥V with
reference to these same axes, the flow momenta parallel to these axesare KpV,, KpV,, KpV,.
Consequently the kinetic energy of the flow is

Tl o (BT + BT+ BT e e (B)

The moment acting upon the body is determined by the equations previously given. If
the line of velocity is in a plane including two axes of equilibrium, the equations are specially
simple. Let the velocity make the angle « with the axis 1; then

G =EKpVcos e; G,=KpVsin o; G,=0.
The component perpendicular to V is

K, pVsin a cos a— K pV cos a sip a=—V(E, K) sin 2«
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and therefore the moment=% V2 (K, K,) sin 2a. 'This is about an axis perpendicular to the

plane of I and 2 and is clockwise. (Of course, if K,< K, it is actual counterclockwise.)

V. +1

F1a. 38

As stated above, the three “principal” momenta of the flow are K,pV,, KV, KpV,,
where V|, V,, V, are the components of the velocity V. But if the localized vector is formed
which represents K;pV,, i. e., the resultant of the parallel vectors representing the components
of the momentum salong this exis of each individual particle of the fluid; and similarly the
localized vectors representing K,pV, and K,pV,, it will be found that, in general, these three
localized vectors do not pass through a common point. Therefore they can not be compounded
to form a single localized vector, and we can not in general speak of *the momentum” of the
flow. If, however, the moving body is one of revolution, or if it has three mutually perpendicular
planes of symmetry, then there is a point common to the three lines of action of the principal
momenta, and it is called the “aerodynamic center.” In this case we may speak of ““the flow-
momentum” @, and our previous formulas for moments and kinetic energy may be written

M=[G- V). e (B)

1 =
T=3 @ V) e (D)

MOMENTS AND FORCES ACTING ON AlRSHIPS

Airships may often be considered as having surfaces of revolution described by rotation
about the longitudinal axis. The central portion of an airship may be considered as a circular
cylinder, and therefore, from what has been proved for circular cylinders,
the transverse apparent mass of the airship equals the mass of the fluid
displaced, approximately. The longitudinal mass is small, because in
a longitudinal motion of the airship the air displaced by the bow escapes

transversely on the whole and the air flowing in at the stern also flows in
transversely, so that the momentum of the air in the direction of motion is

small. On the other hand, when the airship moves transversely, the air in

a transverse layer perpendicular to the longitudinal axis remains in the

layer, so that the flow is & two-dimensional one about a circle. This is true

near the central portion of the airship and approximately so elsewhere.

Cell the longitudinal apparent mass K,p, the transverse apparent mass K,p.

Let the airship move in a straight line with a velocity V having an

Fia. 4 angle of yaw (or pitch) ¢. The longitudinal momentum= "V cos ¢- K,p;
the transverse momentum= V sin @- K,p; hence the component perpendicular to the line of

| 4

Vis% V (K,— K,) sin 2¢, and the moment acting on the airship is

=GV (B—R)sin®p. .8
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about an axis perpendicular to the plane including ¥ and the longitudinal axis and is of such &
“‘sense’” as to increase ¢. It is therefore called the ““unstable’” moment.

Let the airship move in a horizontal circle of radius r, with a velocity 7 and at an angle of
yaw . Call the “ apparent moment of inertia’’ about & transverse axis through the aerodynamic
center K'p. 'The longitudinal velocity is V cos ¢; the transverse velocity is V sin ¢; and the

angular veloeity is —:—7 Therefore, the longitudinal momentum is K,pV cos ¢; the transverse

momentum is K,pV sin ¢, and the angular momentum, which remains constant, is H'p ;

Since the aerodynamic center moves in a circle, the resultant force acting on the fluid must
always pass through the center of this circle. During the motion the two components of momen-

tum remain constant in amount but -their directions rotate with the angular velocity —}7 - If

a vector representing momentum & rotates with an angular velocity w, a force Gw must be

4
Fy

Fia. §

acting perpendicular to the line of G. Therefore there must be acting on the fluid (1) & trans-
verse force F,, opposite in direction to the transverse momentum, equal to K;pV cos ¢ - .
(2) 2 longitudinel force F}, in the same direction as the longitudinal momentum, equal to KpV

sin ¢ - ; . The moment of these forces about an axis through the aerodynamic center, perpen-

dicular to the plane of the motion is (X, K,) % V?sin o. This moment, acting on the fluid,

is clockwise (in the drawing); therefore the moment acting on the airship is counterclockwise,
tending to increase ¢. (Thers is also a ‘““negative drag.”) '

This moment is the same in amount as that found for the airship in straight flight with
the same angle of yaw; but the distribution of forces along the airship is different in the two
cases, as will now be shown by making a closer enalysis of the two flows.

Consider an airship flying in a straight line with velocity ¥, and with an angle of pitch ¢
downward. In a stationary transverse plane perpendicular to the axis, and therefore approxi-
mately vertical, the flow may be regarded as two-dimensional, as explained before. The air-
ship displaces a circle, which changes its size as the ship advances and also its position, owing
to the pitch. "The apparent mass of the two-dimensional flow in a layer of thickness dz, if S
is the area of the circle, is pS dz, since the apparent transverse mass of & circular cylinder, if
the flow is two-dimensional, is known to be equal to the mass of the fluid displaced. The trans-
verse velocity is ¥ sin ¢, and therefore the transverse momentum upward (in the drawing)
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LA

dt But

in the layer is oSV sin ¢ dz. The rate of change of this is p¥ sin ¢ - dz -

dS _dS dx_ + V o as
Gz @ 08 ¢ Tx
Hence atany element of length dz theré is & transverse force downward on the airship, given by
£ V2 sin 2¢ %’5: dz

This force is in opposite directions at-the two ends, and produces the unstable moment. i
Now consider .the airship flying with constant-velocity V, and angle of yaw ¢, in a circle

of radius . The transverse momentum of a layer of thickness dz, outward, away from the

circle, is, as before, pSv dz, where v is the transverse velocity. This now varies with the time.

So the rate of change of this outward momentum is

pdz(Saz+v%t

7
v is made up of two terms V sin ¢, due to the translation, and I; z, due to the rotation, where

z is measured along the axis from the aerodynamic center. Hence

dv_dv dz VV Vcos -
& ded 7 °°S“”'Z' E_ e

Thus the rate of change of the transverse fluid momentum outward is
3 2
edx (S ?ccs e +V? %g sin ¢ cos'kp-{-z— T COS ¢ %)

=(V’§sinl2<p Z’i+V’ 'S cos ¢+V’—cos;a a:ds)dx__---_---------(g)

Therefore this gives the transverse force inward, toward the inside of the circle, on an element
of length dz of the.airship.
The first of the three terms is the same as found for the case of straight-flight. The last

two terms combine to form V2 ﬁ d_%.'z:_S) dz, and the resultant moment due to this force
vanishes. The distribution of these three forces is shown in the accompanying figure.

In discussions of apparent masses it is customary to introduce three constants, defined as
follows:

K=k, volume; K,=k, volume; K’'=k’'J where J is the moment of inertia of the volume
when occupied by matter of density one. o

In deducing the transverse forces on an actual airship, it is not correct to assume that the
transverse flow is two-dimensional, especially near. the ends. A fairly satisfactory formula
may be obtained by multiplying each of the three terms in the approximate formula by a defi-
nite factor, depending upon the shape of the airship. Munk adduces reasons for multiplying
the first term by %, %, and the other two by ’. (In this discussion there is omitted the trans-
verse component of the centrifugal force produced by the air which is flowing longitudinally
and gives rise to the longitudinal mass. It is very small.)

What has been said above applies to airships without fins. One function of the fins is to
counterbalance the unstable moment. If S is the effactive area of a pair of fins and b the total
span, the lift exerted on them, as proved in a later section, is .

L=21r V:—s

x4
128

bz
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where ¢ is the angle of attack measured in radians. If the mean distance of the fins from the
center of the airship is written e, then, for the lift to balance the unstable moment,

La=(k,—k,) - volume .g V3 20, since ¢ is small.

Hence the area of the fins
1 28
(k,—k,) - volume T

a x

S=

Cansz_‘an)‘

T Ty

I,
W (e-k) v Esinzp

Same as i1 straght fight under pifch

—awﬂ [ }
- Y Y .

'V f cos@S
Negative cenfritigdl force

1) N

VL co.s-svx

F1a. 8.—DIagram showing the direction of the transverse air forces acting on an airship fiying in & torn. The three terms are to be added
together

If the ship is flying in a circle of radius 7, not simply must the air force on the fins balance
the unstable moment, but it must produce the force required to make the sirship move in a

circle,i.e.,p - volume - Vr This can therefore be equated to the unstable moment divided by &

and hence
(k,—k,) - volume - § V*2p
p + volume . —=— -
7 a
or
__a
*=r @2_21)

and this value may be substituted in the formulas giving the distribution of the transverse
forces. .
343—26f—8
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DISTRIBUTION OF PRESSURE OVER THE ENVELOPE OF AN AIRSHIP

It is proved in Lamb’s Hydrodynamics, Chapter V, that, if an ellipsoid is moving through
a fluid with constant velocity U, parallel to a principal axis, which may be called the a:-a.\xs,
the velocity potential of the flow at any point of its surface is

* qp——A Uz

where A is a constant for a given ellipsoid.
This constant 4 may be expressed in terms of the apparent mass of the ellipsoid for motion

parallel to the z-axis. The kinetic energy of the flow is

T=-= p_fcp an ? 48 over the. ellipsoid.

%’; dS may obviously be replaced by U dy d=.

Therefore
—% oS AV zdy dz=— U’AJ‘ tdydz= —3 Luaa. volume_of ellipsoid.

But by the definition of apparent mass
=§ Uk, - volume -

Hence oo : e
A=—Fk, and o= -0z

Similarly, if the motion of the ellipsoid is oblique, so that its velocity has the components
U, V, W with reference to its principal axes, the velocity potential at any point of the surface is

o=~k Uz—l,Vy—kWz__ o ......(10)

the origin of coordinates being at the center of the ellipsoid.
The values of the %’s are given by certain definite integrals. If a, b, ¢ are the semiaxes

of the ellipsoid,

—_—— . dp
——~— h L .
k — Where a= aﬁcf (a’+p)1/(a,’+p) BT
k= where 8=abe dp e .

? 8
7c,=2%rs ete.

Jo (b2+p)w/(a’+p) C+p @+p)

For an ellipsoid of revolution
1—Fk,
b=e¢, I =T' ky=k,
The following table gives values of %, and %, for differentelongation ratios of an ellipsoid
of revolution. .

Length k - 14
(diameters)| C9PBI | ¢ ancveres) l_f’_L.__k‘ (rotatlon)
1 0. 500 0. 50 g7 | o
1.50 .305 <621 st T .04
200 . 209 .T02 s « 240
251 1% L7863 8% ‘i
2.69 12 1808 851 -de5
3.99 . 082 . 860 778 . 608
] 0% 1895 1836 101
6.01 1048 L9138 5T e
6.97 L0a8 ~633 a7 1805
801 029 45 .919 . 840
9,02 L02 “954 ‘930 1885
.07 02 ~980 T30 1883
© 2000 1.000 £ oo 1.000
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Similarly, if the ellipsoid is stationary in a stream of air whose velocity has the components
U, V', W, the velocity potential at any point on the surface is

o=A"Uz+BVy+C We o o _...(11)
where

A'=1—-A=k+1, B'=k,+1, "=k, +1,

and are therefore known quantities for a given ellipsoid. Further, the velocity of flow &t any
point on the surface is along the surface; and points of constant potentiel lie on parallel ellipses,
intersections of the ellipsoid by the family of planes = (.

Consider the intersection of the surface of the ellipsoid by the plane ¢=A’Ux+B'Vy+
C’'Wz=(0. At these points the gradient of ¢ is along the surface; hence the velocity of flow has
the components A’ U, B’V, (. At any other point on the surface, the direction of the gradient
is not along the surface; and, if A% is the constant perpendicular distance between any two planes
whose potentials have a constant difference and if As is the shortest distance along the surface
between the ellipses in which these planes cut the surface, As=AR at the first one of the points
referred to above , while at any other point A% = Ag cos ¢, where eis the angle between the normals
to the surface at the two points. Consequently the velocity of flow has its maximum at the
points first described; and, calling this v5,,, the magnitude of the velocity at any other point
of the surface is v, COS &

For the case of an ellipsoid of revolution the velocity at any point on the surface may
be found by simple geometry, as follows. Call the plane through the line of general flow and
the axis of revolution of the ellipsoid the X —Y" plane—in order to have a simple mode of descrip-
tion. Then the transverse axis of the ellipsoid which lies in this plane is the only one which need
be considered. The components of the velocity of the genersl flow are U, V, O; hence the
maximum velocity has the components A’ U, B’V, 0. Let «, B, v be the direction cosines of
the normal to the surface at any point. At a point on the surface where the velocity of flow is
a maximum draw & line parallel to this normal, and call the component of ., along it », and that
perpendicular to it v,. w, is, from what has been said before, equal to the velocity of the flow at
the point where the normal was originally drawn. But

Ve =03+ =(A' D+ B VyR=0,+1)2 0+ (k,+-1)T?
and X
v,=A"U-a+B'V-B=k,+ 1} U- a+ &+ 1T -8
Hence
2=+ 120+ ey + 12V — (e, + DU a+ (ka+- DV - B2 - -_(12)

Then, by Bernouilli’s theorem, viz, p+ é pV,?=constant, the pressure may be caloulated.

With a very elongated ellipsoid, %, is small and k, nearly equals . Hence 4’=1 and B'=2,s0 .

the components of meximum velocity are U/ and 27. Consequently, while the angle of attack

is defined by tan “=g’ the direction of maximum flow mukes an angle ¢ with the longitudinal

axis, where tan ¢=?UE- Therefore ¢ is about twice c.

CONCLUSION

Considering an airship as an ellipsoid of revolution of known volume and elongation ratio,

so that k,, k,, and &’ (and also K, and K,) are known,
1. The unstable moment, for an angle of yaw ¢, in straight or circling flight, is

=5V (B,— K, sin 2p
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2. The transverae force per unit length is, where S is the cross sectlon ata point z,
(2) For straight flight,

(Zc,—kl) £ 7 sin 2p - fz—*:-
(b) For circling flight
(ky—k) 2 V2. 5in 2 dS-!—k’V’BS cos o +k'172 2 cos de
1~ %1/ g @ az r ¢ r Lo P
3. The pressure over the envelope is given by the formula

p= 0——

where, if U and V are the components of flight velomty with rﬁspect to the longitudinal and
transverse axes,

P =, +1 T+ ey + 1P V2= (G, +1) Ua+ (b +1) V - B)?

« and 8 being the direction cosines of the normal to the gyrface at the point at which the pressure
is to be calculated.

PROBLEMS MORE SPECIALLY CONCERNING AIRFOILS AND AIRPLANES
INTRODUCTION

In outlining a theory of an airplane wing it is necessary to show how, assuming certain
constructional data, it is possible to calculate, emong other things, the lift, the drag due to other
causes than viscosity, the p1tchmg moment, and the rolling moment. In the simplest type of
wing, that whose chord section is a straight line, flying at a definite angle of attack, the values
of the lift and the pitching moment can be calculated imamediately. They are seen to depend
upon the transverse velocity of the air flow perpendicular to the chord. Similarly, in discussing
the properties of a wing whose section is a curved line, if the distribution of the transverse
velocity at the points of the chord is known, the lift and pitching moment may be calculated,
as will be shown. So.the first essential step in the theory of the wing is to discuss mathematical
methods of representing arbitrary distributions of transverse velocity over the chord, and to
deduce the nature of the consequent flow. It will be shown how the distribution of velocity
may be so expressed as to lead to formmnlas for the lift apd pitching moment in terms of quanti-
ties known to the designer.

In all this discussion an essential element is the angle of attack; but-it is evident that the
geometrical angle of attack is not the effective one, owing to the fact that-the direction of the
relative wind is affected by the presence of the wing. Owing to this modification of the air flow,
‘there is & drag introduced, known as the “induced drag,” and the effective angle of attack is the
geometrical one d1m1nlshed by what is called the “induced’ angle of attack. The problem is
to calculate these and then their effect npon the lift. One method of approach to the problem
is to assume as known the distribution of lift-along the span, but another and better one is to
assume as known the angle of attack at all points along the span and to apply the general method
to wings having particular plane forms, It will be seen that all these methods lead back to the
discussion of the distribution of the transverse down-wash velocity along the span.

If an airfoil has an infinite span, the flow around it when the air stream is perpendicular to
its span may be regarded as two-dimensional. The air particles in a longitudinal plane, i. e.,
one including theline of flow of the air stream and perpendicular to the span, remain in the plane.
Further, if an airfoil of finite span is advancing into & transverse vertical layer of air, it imparts
to the air velocity in this plane, so that again one can consider this transverse flow as being two-
dimensional about a plane figure which is the projection of the airfoil on this transverse plane.
The simplest case of motion in the longitudinal plane is to consider the longitudinal section of
the airfoil to be a straight line of a length equal to the chord, and the simplest-case of motion
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in the transverse plane is to consider the front aspect of an airfoil to be & straight line of a length
equal to the span.

The importance of two-dimensional flows requires a brief statement of the properties of
conjugate functions which are so useful in all two-dimensional problems. All the cases of flow
to be discussed will be those described by a velocity potential, which then satisfies the equation

az¢ D
s Toyi— Y
Writing z=x+1y, if

F=f (&) =P (z,y) +iQ (z,¥),
P and @ are called conjugate functions, because if F is any analytic function

OP_0oQ oP__ 2@

—=—a—y = o

oz Oy oY oz

It follows that
0P  O°P b’Q 0@
—b—+a—-_0 T =0

to that both P and @ satisfy the fundamental equation for the velocity potential, and, further
shat

dF=-—a—P-— y E

z"2z oy

Consequently, if P is chosen as the velocity potential ¢, i. e., if ¢ is the real part of F, then the
real part of ‘—Z.ggiv& the component of the velocity at any poiz-tt in the direction of the z-axis,

and the imaginary part of gglvai the component of the velocity, at any point, in the negative

direction of the y-axis. Therefore the whole motion is defined by the knowledge of F as a
unction of the single variable 2.

ILLGSTRATIONS OF TWO-DIMENSIONAL FLOW

1. Let
F=iV (e—iVI—2% o i e e _(13)
Then
—-—'LV(I+ Ve e __(14)
Ji—2)" Ji—2

Thereareewdentlytwosmgula.rpomtsz=;{:1, i. e, z=1, y=0 and z=—1, y=0; and at

mﬁmty 7 =0
Along the line joining the two smgular points (—1, @) and (+1, 0}, y==0 hence
Fo=4+VJI—z3+iVx,

O—GTF) VI; +iV

- o
in which the upper signs apply to points on the positive side of the line (i. e., where yis positive},
and conversely. Hence, for points on the line

Do = :EV-JI—ID‘ - ——- ---— _———— ~; e e e - ————— — (] 5)
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Further, tho longitudinal velocity, i. e., the velocity along the z-axis, is

- Teo . :
1/1—3:0 """""""",""""""'"'(16)
and the transverse velocity downward is : _
U=V - - e e e e = = (1)

The general function F, which was assumed to begin with, represents, therefore, the two-
dimensionel flow around a straight line of length 2 moving transversely downward with a velocity
V. (Or, the general flow about & lamina, infinite in IenO'bh and a width 2, moving transversely
with velocity T.)

Near the positive end of the line, i. e., when z,=1—e¢, € being a sniall quantity, v= ?:/-%,
and therefore » becomes infinite on both sides of the line, but is “outward” on the lower side
and inward on the upper.

It should be noted that in defining a function F which leads to a value g,= +V+/T—z3,
the difference of potential between two points on opposite sides of the line is 2V4T—z,2. This
is at once evident if polar coordinates are used. In that case, writing z=cos &, where §is a
complex number,

F=iVeB=V (sin §+1 0S8 - oo oe- - (133)
dF dF d8 Vet 14 . ) i
! — = -e N e T p——— —
T e B ke soj (cosé zsmﬁ)---------------§14a)
For points on the line z,=cos §, where &, is real, and
0o=VsIN 8y oo cea e (158)
V cos 5
Vo= — anaa"smo:V
hence at
|4 .
50=0,im¢=—m----------------'------------(18)

As z, goes from +1 to —I on the upper side of the line & increased from O to =; and, as the point
returns on {he lower side of the line, & increases from # to 2x. (The flow is shown in the Figure 7.)

F1a. 7.~Transverse fow, iprcduced by a moving straight line



A RESUME OF THE ADVANCES IN THEORETICAL AERONAUTICS 109

If the line has the length b, stretching from (—gs 0) to (+ g: 0)» Wwe may write

Fiv} (’%z—«:\/z R R )

Then
Fl= 2 +'LV---__-__-_--_________-_----(1-1:')
Vi ( [1-(G+)
Thus
—-'-VZ’,\ Ebzo)-____--_---_-_.__-_---_--_-(15')
=
U=V e e e oo eme e ae e == (1067)

\/1 ~(3=)

Or, using polar coordinates, writmg  2=cos

FeiV8 e vE @inasicossy . ....13W

N .. '
Frle———(c0s §—18i08) oo oo o oece oo emee = (1470)

sin §

. ’

Po= Vgsm PPN § €169
. _FVeoss, =V
sin 6§,
and

| 4 '
'Uedqc='—(sm 50)0-—-----------------"-—----“--(15 )

It has been proved that the kinetic energy of the flow is

T"‘ef"?ﬁ

integrated over the moving body, where dn is the normal away from the body. In the case o
the line of length b, moving transversely with velocity V

b 2 N2, /fde .
¢o=iv§,/z—(z :o), (&'ﬁ)ﬁ“’ S =dz,

Hence, integrating over both sides,
2 2
reg v s [ i Ba) i
-y

2
cos 8o=-b- T

or writing

T8 7.3 ["sint 828,=G P (§) <o oeee oo 1)
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But = (g)z is the ares of a circle described about the line of length b as a diameter. Tho
apparent transverse mass per unit length, then, of a lamina infinite in length and of width b is
or (3)2, the same as for a circular cylinder of diameter b moving transversely.

2. A second function, suggested by the first, is

F=ijA e =4, (SN nd+2¢08N8) _ e oo e =2 (20)
where 2= cos 5.
Therefore

ne—ind neosnd ., nsinnd ;

F e — ———— e d ! - —
T ¥
Hence . o
po=A, sin nd, [for points on the line joining (—7, 0) and (+1, O)] .. .. .___.(22)
)
=-—A neosn U N (.
Vo " S 5, (23)
in né
u‘a=An "'z—ssi%n%l_r':_ [ -".-_'_.'-'..__.._...--_-__'__(24.)

Note that u, is ho longer the same for all points of the line.
For & line of length b, stretching from <—g» 0) to (-i—%x 0) we may write, f we wish the

same expressions forv, and u, as just found,

3
F==A,,% (sin nd+7 cos nd), where cos 6=§z--------.—----_--_--(20’)
Therefore . . oo [ A
t n cos nd , . n sin nd e L. ]
F Ay S 3 +1d, = 3 Cotesariminldiawe ez 22(210)
b . ,
¢0=An§sm MO e e e e e e e e e e e = (227)
Vo= —Aq, ns(‘;cr)lsafﬁo .. -----:—--.;--;-_--.:._-."__..- - --(2381
and
7 sin né, 2 ,
Uo=Agn Sin 5, swhere—E To=CO08 8- o e oo (24D)

In the formula, therefore, for the kinetic energy of the flow

<p,,='A,,;g sin né,; %E)o= —-A, %T—;?ﬂ-
and
dS=dz,= —%sin 8, d8,,
and

2% ot
T=£ 4, (%)’n f SN e« sin 8,d8,= 5 Agin (%)'n__ e 25)

810 6
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The impulse per unit length required to create the flow is —py,; hence the total impulse is
—pS ¢, dz, taken over both sides of the line, L e.,

P ‘ﬂgsm 0 gsm o Yo pr 2 i

3. A more general case would then be a superposition of flows like the one last considered,
described by

F=i{A, =i+ 4, e—iT—2) +ete.} ..o .ceee_____(26)

where it is assumed that it is possible to so choose the coefficients as to make the series involved
convergent. Obviously, then, for points on the line connecting (—1, 0) and (+1, 0),

¢s=4, sin §,+ A, sin 25,+ete., where ¢os 8;=%¢ - - - e .o —._ (27)
Vo= —{Aslilcloasoa°+2‘4;i;°§fs°+ etc.} P ¢22) |

_ A, sind, , 24, sin 25,
Ye="gin3, + s 3, +ete . _(20)

For a line of length &, i. e., making cos 3, =% z,

o= (A i Byt Ay Sim Byt 0te) oo oomo oo _(2T")

if », and %, are to have the same forms as before.
In the formula for the kinetic energy, then, -

T=§(§)’f"(A1 §in 8, + 4, sin 25, + - -) (A, sin 8, -+ 24, sin 28, + - - ) db,
2
=t x (%) (AP +8A7 4« - - - e e (30)

Therefore, not simply are the kinematic properties of the separate flows additive, but the
energies also.
The constants in the formula for F may be determined by various physical specifications:
a. Let the distribution of potential be known at all points of the line between (—1, 0) and
(+1,0), the function having equal and opposite values at opposite points. S
Then it is possible to so choose coefficients that g, may be expressed as follows:

@o=4, sin 3,4+ 4, sin 25, +ete.
for, on multiplying both sides of the equation by sin nj, and integrating from O to =, : —

f P f " (4, sin 8, + A, sin 25,+ - -) sin nd, - d5,= f " Ay sin® n3,d,=] A,
. [1] 1]

Henece _
o -r - -
A,.=:f B Y 15 -
T Jo

and is therefore determined. These values of the A’s may then be substituted in the general
function F. (For a line of length b,

2 2 . )
:1,,=-5 . ;J; G SIN N8 e e e e o 2-(B17)

in formula 27/, ete.)
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(A better mode of expression would be to specify that the differenco of potential betwcen

opposite points is known for each point of the line, i. e. Atp is speclﬂed Then expand 5 Aqa in

& series A, sin 8§, + A, sin 25, + etc.)
b. Let the distribution of Jongitudinal velocity be specified at each point of the line of
length 2, being equal and opposﬂ:e at opposite points.
We may ‘then consxder Vp 8in 8, as known at each point, and this can be expanded into a
series
¥ 8in 8,= — (4, cos §,+ 24, cos 25, +etc.)
if the A's are given proper values, viz, since

fr ¥, 8in 8,- cos néd, ds, = —fr nA, cos? né, ds,= —% nAy Ay= —% fr ¥, il &, ¢ COs 78, dB, . (32)
' - .

]

and these values may be substituted in the function F in order to determine the flow at all
points. !
(These same values for the A's are to be used in the formulas for a line of length b.)
¢. Let the transverse velocity be specified at each point of the line, having the same value
at opposite points. Then , sin §, is known for each point, and this may be expanded into a
series :
U, sin 8,=A, sin §,+ 24, sin £5, +etc.

by giving the coefficients proper values, viz, since

f " o sin 8, sin 15, d6, = f "ndy sin® b, do,=] ndp An= f " w, sin 8,-sin 18, 5, . . . (33)
[+] o

[

These values may be substituted in F, etec. (These same values for the A’s are to be used.in the
formulas for a line of length b.)

The essential thing is that, if specification @, b, or ¢ is made, the flow at all points in space
may be deduced.

4. It f (2) is a flow functlon and contams a parameter z,, then f (z, :co) Y, dz, is also a solu-
tion of the equations if %, is a function of ,. Hence. also

F=f_+:f<z,z.,) N U - 7%

is a solution, and :
41

=f-1 I (2, z,) Uy dx,, wheref’=§£ SR 15

A value of f (z, z,) suggested by Munk is

=L {log (¢# —e=) —log (B e} ..___________.______._(30)
where cos §=z and cos 8§, =2z,.
This solution F may be interpreted physically by deducmg the meaning of each clementary

term.
_Isin3s 1 1 1 I—z?
L o =i o . -
S == s cos 3—cos & -n-z—:o,,\/ Togt - -- - -- 87)

where the negative sign is to be taken over the positive side of the line, and the positive sign on
the other. There is evidently a singular point at z=z,. For points close to this—not neces-

L , that is, f’. ¥, dz,, when applied

sarily on the line—f’=
to these points, has the value

=1 1
T e—T

x*— Zo—’ly
T—x,)2 4y

U, da:o==|=1 U, dx, q



A RESUME OF THE ADVANCES IN THEORETICAL AERONAUTICS 118

If a small circle of radius r is drawn around the point z,, and the point z, y lies on it, r* = (x —z,)*

+3% The velocity along the z-axis for points on the positive side of the line is— ZT- U, dz, x—;ﬂ',

and the velocity along the y-axis is—f_u,, dz, :’—, hence there is a radial velocity inward

toward z,, of the value ;-u,, dz, - 1 Therefore the total flow per second in through the semi-

circle is pu, dx,. Similarly there is an equal outward flow through the semicircle on the negative
side of the line.

This is equivalent, then, to there being & transverse velocity u, at all points of the element
dz,, toward it on the positive side of the line and away from it on the other. This gives the
physical meaning of u,.

The total function

+H1 v, de, 1 -z -
_Tf 2SR SRR

T 2—T, -

indicates the effect at & point z of & given distribution of transverse velocity, u, being the down-
ward velocity at the point &,, on both sides of the line. The longitudinal velocity, due to this
distribution, at a point # on the line is ‘ '

W1y, do, [T=zf

1 TIT—%, V127

v="F

Interchanging symbo's, the velocity at a point z, on the line is

1 yude [I—2 B
v"_if_l e Vi P b (39)

where u is the transverse velocity downward at the point .
For a point near the positive edge, write z,=1—¢ where e is small. Then since

sin 5, = /1 —2,2 = /%, -

o {4z
Vedge =" (sm&),._of Jz__:{;d fmmreom oo s oo (H0)

The flow, due to a single element, is hown in Figure 8.

F10. 8.—Flow around a straight kne created by one element of the wing seef on

If the line has the length b stretching between

(-g.o) and (+%.o) let

+b/2
F=f flz, z,) 4, dre
—br2
where
=L {log (¢ — 1) —log (4 — e}

2 2 .
and cos & =72 and cos 55=5 z,. ‘This leads to a transverse downward velocity u, at z,, etc.
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Finally
2 1 +oie ‘1+§z_
”«dw=“57?'(§’1i“"a;7;',‘.‘,£m u‘/r 2xda:___--------------(40')
%

Two expressions have been deduced, therefore, for the flow due to an arbitrary distribution
of transverse velocity over & line of length b:

1. ¢=g (A4,sin 6+ 4, sin 26+ ete.)
in which
A,,=£;L--J:fuc sin §, - sin né, - dd,

where cos 6=§ 2 and u, is the transverse velocity downward at the point z,.

2. ¢ is the real part of .
+bi
P17 @ 20 uo da,
in which . o . . . .
f (2, z,) =.% { log (ett —e—9) —log (e _eta.)}‘

These are, of course, mathematically identical.
5. A flow of a different kind entirely is given by

F=A,s8in 2 . (41)
This makes
F’=:i:——AL= 4, » where cos §=2 :
JI—7 sind St (42)
and
4,
‘v‘o=sin8--_-r.';"'.“.'--..:.'---'__-----__-_-_._- e (43)

Therefore for points on the line between (—1,0) and (+1, 0), u=0 on both sides of thelineand
v is positive on the upper side and negative on the other. The flow is as indicated.

Fia. 9.~Circulation flow around a straight line

F is a multiple valued function, its modulus being 2rd,. For points on the line y=0,
beyond z=—17 and z= +1, ¢=4, sin™* z; consequently there is & difference of potential 274,
between two points lying on opposite sides of the line, since each line of flow incloses the origin.
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This flow can not be produced by impulsive pressures over the line between z=~1 and
z=+1, because the flow is everywhere parallel to the surface. It can be imagined produced
by impulses over all points of the line =0, extending from one end of the line of length 2, out
to infinity. At all points there is a potential difference 2x4,; hence the downward impulse per
unit length of the line required to generate the motion is 2x4,0. But if the line of length £
be considered an airplane wing, and if it moves with a velocity V longitudinally, it must
deliver to the air per second & momentum downward equal to the lift on the wing, L. There-
fore since this momentum is imparted in going & distance V, the momentum imparted per

unit length, i. e., the impulse per unit length, is ’TZ; Hence

%=2:—Aop -+« (Kutta’s theorem) .. .. ... ... __.._.._(44)
or
L
A":Q‘rpV
and, from (43)
L
Vedge = PV (8D Og)p,mg ~~ T 7T TS T memewmmsmoe-s (45)
For & line of length b, stretching from (—gs 0) to (-[—%v 0) write
F=A4, sin (§ z)-- (a1
Hence
2 2
45 43
Fl=x IR TY Bt SN (-3
Vi-G=)
As before,
L
V=2n‘1°p,
and therefore
2 L ,
B N

In these formulas L is the lift per unit length along the infinite span, since the problem is treated
as & two-dimensional one.

ANGLE OF ATTACK AND LIFT WING SECTION THEORY

In discussing suitable combinations of types of flow for application to airplane wings,
it is essential to include a circulation flow so as to secure lift, and also so to choose the types
that the total flow divides exactly at the trailing edge. The condition for the latter is that
Vogpe=0. (Kutta was the first to state this condition.)

A. STRAIGHT LINE, ANGLE OF ATTACK «

In order to introduce the angle of attack, consider the problem of the straight line of length
2 moving with a velocity ¥ 'in a direction making the angle « with the line. The transverse
velocity is V sin «, and hence the flow is given by (13a) as

F=Vsina-tre® ____ __ e __.___(4B)
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and the longitudinal velocity at-the trailing edge is, by (18),

. I
-—VSlIlam---..-'.-_---_-_--------------_(47)

Since « is small, F can also be taken as the flow function for a line inclined tv the axis of z by an
angle o having a velocity Vin the direction of the axis, v and u now referring to the line of flight.
(’l‘hls approximation was proposed and used by Munk.)

-1 +f

/

14

Fia. 10

Due toa circulation flow around the line of length £, given by F= A4, sin~* 2, the longitudinal
edge velocity is, from (45),
L 1
27pV (8in §p)s,=0

Hence, if v4q;. =0 due to the two flows,

L Vein o«
2—5']7=- sln «
or
L=2rpVisin @ . oo (48)

Introducing the area, S =2 since the span is one, and, writing « in place of sin ¢,

L=21r% V280 o oo e e e mm e e - (480)

giving a lift coefficient _ —
Ci=2xca
If the line has a length b, the two edge velocities are, by (18’) and (45"},
| —V si ! ‘Q L 1 , -
s e sin 5, oo o 73 2x pV (8iD 8y) 8,m0
Hence
L=21rp17’§ SIM @ e ee e e i e cia a2 (487

But S=5, and therefore, as before,

L==21rg— |1 OO (1. 1 )

B. CURVED LINE, ZERO ANGLE OF ATTACK; “APPARENT*’ ANGLE OF ATTACK’

- 1 \\\""-\
v. (¢ X
I ] +1

Fia. 11

If the wing is & thin cambered one, it is equivalent to a good approximation, to a curve
which is the mean of the upper and lower curves of the wing section. Consider, then, the
problem of the motion of such a curved line whose chord is the z-axis, having a velocity ¥’ in
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the negative chrecgon of the chord. Let £ be the ordinate of the curve at the point . Any

element of the curve is then moving with the angle of attack whose tangent is— Eg Therefore, at

this element the component of ¥ downward (. e., as shown above, V' sin ¢, or Va) is— T"% if the

curvature is small. This is to be substituted in the formula ;;reviously deduced for the case
of a variable transverse velocity along the chord, viz, for a chord of length 2, from (40),

Hdg [T+z _
m -1 d:c’\ 1— a:d “""--------~----___(4:9)

This leads to a definition of the “ mean apparent angle of attack,” viz, the angle of attack whlch
n straight line having a chord of equal length would have to possess m order to give this same
value of edge velocity and therefore the same lift. Calling this angle «’, the condition, then, is,

from (47},
. 1 _ |4 tide (142
L T P o< P f oz \/ -z %

Hence
Hid: [T+z z g 1 tdx

=3 4 BV P75 a0

sinceforz=1, £=0.

For a line of length b, the angle of attack of each element and the component of velocity
downward are as before and, from (40'),

+bf2 JE 1 +‘b‘ T

=} AT ) & B e (890
A

Hence

[145% gy
N SO e

Since for any given wing section £ is specified as a f (z), these integrals may be evaluated and
o’ may be calculated.

ceee---(50")

CONCLUSION

Considering the wing as one of infinite span, the lift on a cambered wing of chord ¢ and area
S, when at zero angle of attack, is

L= 21' 728’

where

Ly

In this formula £ is the ordinate from the chord to the mean curve of the upper and lower sur-
faces of the wing section.

(For simple methods of calculating o from wing profiles, see N. A. C. A. Technical Note,
122.)
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PITCHING MOMENT AND CENTER OF PRESSURE

In the case of a straight line of length 2 moving with a velocity ¥ at-an angle of attack «
the moment acting on it due to the air forces may be calculated at once from the general theorem
already proved, viz: The moment equals the product of the velocity and the component,
perpendicular to the velocity, of the momentum of the air flow. Such a line has a transverse

Fia, 12

mass 7p, and hence a momentum, perpendicular to.the line, of xp.V sin a. Its component
perpendiculer to the line of ¥ is then #p V sin a-cos «; and therefore the pitching moment
(clockwise), for unit span, is .

M= V’% 2 T (1 )
or
=22 V’ Ny

since « is small.
The lift was found, (48), to have the value, for a wing of unit span,

L=2x V?.a
Hence the distance of the ““center of pressure’’ from the center of the line is

%[ .é ".'._'.'T".""..".""'_"_"""."""""(52_)

1t is therefore independent of a and is 25%, of-the length of the chord from the leading edge.

For a line of length 5 the transverse massis = (g)’p, and hence

M=2x (%)’% R -1 1,
Further, from (487},
L=2‘n‘%pV’d; ' ' ;
Hence ‘ '
BLD 2

i. e., the center of pressure is “at 25% ", and is independent of a.
In the case of a curved line, in order to deduce the center of pressure, it is necessary to
calculate the distribution of pressure over the line. By Bernouilli’s theorem the pressure at any

point equals 0—— (velocity)? where Cis a constant. The general formula for the longitudinal
velocity is, (see (28))

cos J, cos 26 o
—<A1 S o4, S e )

This may be applied to any element of the curve, and is the velocity of the flow toward the right;
but since the curved line itself has a velocity V toward the left, the relative velocity between the
air and the wing is V4, or

cos §, cos 25,
V—<A‘ sin 60+2A sin 5, ot - )
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In squaring this, the squares of the A’smay be omitted, since in the integration given below the
corresponding terms would disappear. Hence

] €os 5, cos 23,
p=0-5 PaoT (4, 004, B0, ) L ®)

The first two terms are the same for all points on both sides of the line and therefore produce no
moment. The second term gives equal and opposite values of p at two opposite poinis on the
line, 1. e., if it is & pressure on one side it will be a suction on the other; therefore, the pitching
moment (clockwise) for unit span,

+1 +1 .
.-1[=2f1 pzdx=2f | P cos 8 sin 8o d8,
where z=cos §,

=2fo' (A, 08 8+ 94, 005 2y - ) 008 8y Ao =8V p- A, B oo (59
¢
But the value of A, in terms of the transverse velocity was found previously, (33), to be
A =g-f'u sin® 8, dé
1 xJ, 0 0 (]

In the case of an element of the curved line

dt

~—Vclz

hence, for a wing of unit span,

A= —gpV? f " dE sin?® 8, d8,
— 2o f =& da

- —M!f_l ﬁ oo __(55)

For a straight line having the same chord and the angle of attack «, the pitching moment was
found to be

p
2x1? ?

so that, in order for the straight line to have the same moment as the curved line at zero angle
of attack, the angle of attack of the former must be given by

Vi Lo =2V | e dr

or
” 2 T zg

a’=-% 1/__94_,0295_.._...._.._.._._._.__.,.___(56)

The lift of the straight line was found to be 2xpV%«; hence the lift of the curved line at
angle of attack zero is, for unit span,

L=2xpV?/, or on substitution from (50},

&dz
Y . {

zpmfl U—odl-2 6D
848—261—9



120 REPORT NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS

- "“ i e i e il oo mmmm == - (B8)

fl—-—xm“‘

- .o 1
Writing this fraction equal to b, the position of the center of pressure is given by

—h
g %

If the length of the chord is b, the moment per unit length of the span is obviously

b 3
M=2Vp<§) 45 -
ST ) W ¥ -
oL T

+bI2

a=en?2 5 (5

=== dr. ceeeoa--(B")

For a straight line, by (51'),

Therefore,
z- E .
)f - b da:_--_-_-__--_--...------(5&')
"G
1-
L=2mpV* % a’, per unit length of span, or, from (50°),

= AY i Edz__ .":."‘.-"1.'-"'.““"""_""T(571) .
O ey T

1593 -\, zx

Hence

L "““T“t_"f"""':'":'
(-5 W-Ge)

It follows at once_that the position of the center of pressure is given by

‘-
62(1 hy=—%~ :

The case of two or more wing sections, combined to form a biplane or multiplane, when sur-
rounded by & two-dimensionel flow in a longitudinal vertical plane may be treated in the same
way as a single section. Each section determines by its slope at each point a distribution of
vertical and horizontal velocity. This distribution being known, the resultant moment can
be determined; from Kutta’s condition for the two trailing edges the lift can be deduced; and
finally the center of pressure may be caleulated. The mathematical difficulties are, however,
great.

+b72 ‘5”5 |
fbln‘/j (‘5 ) o)
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CONCLUSION -

Considering the wing as one of infinite span, the pitching moment acting on a cambered
wing of chord ¢, per unit length of span, when at zero angle of attack, is

s (3)r o
where ‘ ) . I
:c t-dr T

(2) - 01 (2 )z; _ N

and the ratio of the distance from the leading edge to the center of pressure to.the length of

the chord is I——h -

o2 %z-&-d:

—c2 _\/1_(§ x)z N |
h=_f+cn Fdz -
QIGRNED :

For simple means of calculation; see N. A. C. A. Technical Note No. 122.

INDUCED DRAG AND INDUCED ANGLE OF ATTACK - -

where

A. INDUCED DOWNWASH

In what has gone before we have considered only the two-dimensional flow in & vertical
longitudinal plane; but this is only part of the motion, for it presupposes a wing of infinite .
span. If one views a finite wing from the front it is evident that, for many purposes, one may - - o
consider again the problem as that of a two-dimensional flow about a straight line, this time
in a vertical transverse plane. The wing enters a stationary vertical layer of air and imparts L
to it a certain energy and momentum, this last giving rise to thelift. ¥While it is-passing through .
the layer it imparts to the air a certain velocity downward, and so is itself moving through air .
whose relative velocity is not in the direction of flight. This velocity downward, which modifies —
the direction of the relative velocity of the flow, is called the “induced downwash” u’. Its —

)4

~ ——
—
~—~

Fia. 13

effect is twofold It evidently decreases the geometrical a.ngle of attack o, by an angle whose

tengent is 7: or sinee u' is small compared with ¥, by an angle % 7 This is called the “induced”

angle of attack, i. e., -
'

so that a,= ag—ay - -

Again, since the resulta.nt force on the wing is perpendicular to the relative velocity, its R
direction is changed, thus giving rise to a component parallel to the direction of flight but in an
opposite direction. This component therefore opposes the motion of the wing, and is called .
the “induced” drag, Dy, to distinguish it from the ordinary drag due to the viscosity of the ' -
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D

o'

Fio. 14
air. The magnitude of the lift is not much affected by this change in the relative wind. It

is evident from the geometry that if dz is an element along the straight line representing the
span and €D, and ¢L are the corresponding induced drag and lift,

dD‘=3f-; F N (: 1)

It. is imporfant to determine the connection between 4!, the induced down wash, and «,
the final downward velocity in the vertical layers of air after the wing has passed through.
In one second the wing moves forward a distance V, and therefore the kinetic energy imparted
to the air in a layer of thickness ¥ equals the product of the downward impulse (i. e., dL in

this case) by the mean of the initial and final downward velocity, viz, f"_" dL. Considered

also in terms of the induced drag, this energy equals /" VdD, which, from (60), equals J‘u’ dL.
Therefore

U
u’—-g ___----___-__-_.._.__-_-_-_-----_--_--(01)

B. MINIMUM INDUCED DRAG

An important question in regard to the ng is: Assummg a definite total lift, what dis-
tribution of the lift. along the span will glve rise to a minimum induced drag? Or, calling
downward momentum imparted to the air in one second @ (i. e., the lift) and the kinetic energy
T, what is the distribution of 1ift such that for a slight modiﬁcation in the flow §7=0 while
G=constant? Let. there be a slight change in the flow brought about by the addition of a
flow defined by a velocity potential ¢. The 1mpulse per unit length along the span required
to produce this flow is —p¢. Therefore the increase in momentum would be —p f ¢ dz
along the span. This must equal zero, since @ is constant. . The impulse acts upon air already

flowing downward with velocity u’=% u, hence the increase in kinetic energy is the sum of

two terms, — % pS up dz and the energy of the added flow itself, which may be neglected
since it is.proportional to the square of the added velocity, which may be assumed small.
Hence, since §7=0, % pS uo dr=0. Therefore, to satisfy both conditions, %= const. along

the spean, and the induced angle of attack is the same at all points. It is casy to see that this is
the condition for & minimum (and not & maximum). (In the case of a biplane without stagger,
the same condition of «=const. would be true over both wings.)

In one second.the wing advances a distance V and imparts, therefore, a downward velocity
u, constant along the span, and a momentum equal to the lift. . Let Kp be the apparent trans-
verse mass of the projection of the wing on a transverse vertical plane due to the flow in the
plane (e. g., monoplane wing would give practically a straight line of length b, equal to the
span); that is, it is the apparent transverse mass of & surface whose edge is the pro;ectlon
referred to and whose depth is unity. Since the surface described in one second as the wing
advances a distance ¥V has as its edge the projection mentioned and a depth ¥, the apparent
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mass set in motion in one second is KpV, and the momentum imparted in one second is
EpVu This must equal the lift. Therefore

L
v="FV e e e e = (62)

for the case of minimum induced drag.

The kinetic energy imparted in one second is% EpV-u? and this must equal D; V;

therefore,
Dl.(-'z% pEu?
2
b V-E
Further
D;... L
o= "{;——j,:— Y (: )

49” VK

Since in the neighborhood of & minimum, properties change slowly, these values of D, and aq .

may be used for other cases of lift distribution also.

The two dimensional flow in the transverse vertical plane about a line of length b equal
to the span has already been discussed, viz, for the case of uniform velocity u downward at
all points of the line, from (13°)

=1 % 1 (’% z2—1 -\/I—G% z)z)
e 3T

The difference in the potential on the two sides of the line at a point « is 2 u 7 1 [1— (2 )

Hence, for points on the line,

which corresponds to an impulse per unit length (along the chord) of p2u 3 \/ 1- (15 )

See (1a).
In one second this unit length advances a distance ¥ and communicates a momentum Z,, where
L, is the lift per unit length of the span; since this momentum is imparted over & length V, the

momentum imparted per unit length is%-l- Therefore

———L —ZVp—\/ <2 ) 2Vfupgsm6°

cos &, =§- -

L= f+ " @ dx=2Vup (%) fr sin? §,-d8, = Vupr (g)’

and therefore, on substituting for % its value in terms of L,

dL 4L sin g,
dz b

where

Hence

RPN () |
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This particular distribution of lift along the span, correspondmg to minimum induced drag, is
called elliptical, because since

=g cos §, and

dL 4L .~
Y=z,=psn 8,
the points (z, ¥) lie on a semiellipse.

Returning to the values found for D, and o, the value of K may be substitued, viz, = Z;—:
Therefore . : —
U (66).
tmin 2 P
b 5 V2
= L il bl loatAbte il B (67)
p
w5 7

The effective angle of attack varies from point to point along the span. It has been proved that
for an element of the wing, of area S, over which « is constant

T L=21r TS

2

If «, is the effective angle of attack for an element dz of the span,

dL= 21r V2a,-c dz where ¢ is the chord

Hence
o _drL 1 ] _ o .
LE 2x % Vi.e
. dL
Therefore substituting for Tz from (65)
L BLsing, ol .(68)
bric g V2

Calling the geometrical angle of attack «,, it is evident that

a,=a,— oy

Hence
2L sin 8, L (
Qo= 4 =%, 1 Ay
b'e-L 7 bt V7 #bsin &

C. GENERAL CASE OF CALCULATION OF INDUCED DRAG WHEN DISTRIBUTION OF LIFT ALONG THE SPAN IS ENOWN

In case, however, that the induced downwash is not—constant along the span, the induced
drag is not & minimum and the distribution of lift is not elliptical; so the formulas just deduced
for o, and «, do not hold. For the case of a variable transverse velocity along the span use
can be made of the genera] formula (277)

¢o=g (AI Sin 60+A2 Sin26°+ . -), thre cos 60=% 2

)()
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Hence the difference of potential between opposite points is
b (4, sin §,+ 4, sin 25,+ - -)

and therefore, by the same argument as before,

L bV (4, sin 8+ A, Sin B+ - ) emccooae e oo (70)

Consequently, if % is specified at all points of the span, 5175 % may be expanded in & Four-

ier’s series and, the values of the constants being thus determined, the fiow is known, ete. o
In this general case, by (29), i

sin 5, sin 25, .
=4, o 6,,+2A“ sin 3, +ete. . N
and
1
. w 3Y 1 A s .
a“:?:-—t?:m ( , S1I0 6o+2-A: sin 28, +ete.) oo ____(71)

Further, since q=%x

2 L A . . . .
Dy= 5T dz=p (§) J; (4, sin §,+24, sin 25, +ete.) (4, sin 8,4 4, sin 23, -+ ete.) d5,
o (BY (4124,
~5o(g) Artedre o)) _
(In the case of minimum induced drag, we found, (66) and preceding, the values P
: Iz
D‘miuzrb, % 7 o . - . .

—r)

where u=A4, in the general formula, i. e.

b
L=A,Vr (g)
and therefore
xr [0\
D‘min =ghP (}?) A2
which shows, since A4,, 4,, etc., are small compared with A,, that D;  —and therefore the
corresponding a;—may be used even in the general case of variable downwash). '
D. EFFECT OF INDUCTION GPON LIFT AND ROLLING MOMENTS _ _ N
The problem of deducing D, and o; has been solved, then, for the case when % is .given for —

all points of the span. Consider now the problem of the angle of attack being known at each
point, is there any simple plan form which will permit a solution ? '
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It has been proved that

and that 5=b Vp (4, sin 84, sin 85, + .. )
Hence the general term is
b4, sin n&

K= _TV—‘L:- e il dl it mc mmnm = --_-..---(73)

Further, the general term in oy, as given in (71), is

nAnSinn‘sg._ e
o m'—------------------------------(74)

Therefore one is a constant times the other if ¢ is propertional to sin 8, at each point of the span.

For an ellipse of semiaxes g and Oformed as the plan of the wing

(73+(F‘==1

§x=cos 8o

hence, since

¢=Csin 5,

Therefore such an elliptical wing makes a, proportlonal to o
Further, since the area

S=r5° 5 zb ¢=>4 sin 5,

The same formula holds for a semiellipse.
For such a plan form, then, the general terms are

4, s8in n 6,
&= L T
2 V.sin 607- g
and
a_nEeo s
g ~"p

For the first term, i. e., n=1

a,,=a,+oq=a,(1+ ) (1+ A sma L
2V—sm8
and for the general case
ar= —gg——{(1+ 5 ) dusin s, +(1+ 4 ) dsingt 4 . | om)

or

2V, ’%sin 8, .a,=(1+’%§)4, siﬁ 5°+(I +%g_) A sin 25,4+ .. ..._.(758)
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Therefore, if o, is specified over the span of an elliptic wing, the Fourier expansion gives values-
for the A’s, and these may be substituted in the formulas previously found, viz:

dL =b Vp (4, sin §, +A4, sin 2§, +ete.)

1

= m (Al Si_'ﬂ 80 +2A3 Siﬂ 250 +et0.)

T by 2 2 )
D1= 3 p 3 (Al. +2 Ag +ete.)
The entire lift

o ("Rl _ de

So only the first term has any effect, and
+b/2
L=bVpd, f sin 8, dz
—b2

or replacing sin §, by its value 141 bS—" end 4, by

28 1

2V a
B, 88

1+ o
(since only the first term counts),
+b/2
=27 L. ex fm P R ¢

1+% |

Expressed in terms of the effective angle of attack,

+b/2
L= z Py, er o a, ¢-dz
hencs
1 +
b!
If there were no induction, e, would equal @,. So the effect of induction is to reduce «, in the
ratio 7 : 1 + %‘,S

+if2 o
The rolling moment 1f = f E_ z-dz along the span.

Hence
+5/2 -
=—f gﬁ'cosa,, sin §, - d&——gf @51 25,-d5,

Therefore only the second term in %—fa as given in (70), has any effect and, substituting in the
original formula for A,
152
M—b ypA,f ™ sin 25,1202
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Further, using only the second term in (75a) for aj,

2V. %3 sin 8,-ep= (1 +-7)-)A sin 26,

hence T i _
. 28 . _
A, sin 26,=2V. 7 sin 8, _TS
I+ ¥e3
or, since .
§ sin 8,= 5 be, 4, sin 24, = V' § —%g-a,
1 +5
Consequently
V.27
+b/2
u=2 4Sf LR T £ RN ¢ £ - )
I+F LN Cm e -
Expressed in terms of effective angle of attack
gé=21r sViea,

Therefore the rolling moment, by its original definition,

+5/2
M=%-V’21rf ¢z a,dx
—b/2

hence

and it is seen that so far as such moments are concerned, the effect of induction is to reduce «,

in the ratio I: I+4S

E. NOTE CONCERNING BIPLANES

2

Since D;=—;£—— where Kp is the apparent mass for a two-dimensional flow in the trans-
4V-K :

2

verse plane; and, since, for & biplane, K is greater than for & single wing, Dy is less, other
things being equal Thus, if K applies to a biplane of a certain total ares and span b, and

E, to a monoplane of the same total area and of span b,, the lift is the same for the two,and

if the induced drag is to be the same B
- 2
B=K,== (%)

. K
b= kb, B2y
(2)

The value of K is known for different cbmbiné_tions; of wings, and k may thus be deduced.

or if

% I+ 5 _
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CONCLUSION

For & wing of span b and chord ¢, the area being S, if o, is the geometrical angle of attack
at a point z of the span,

7 +b2

L=2x V' — 55 AR
. 1435
i. e., the effect of induction on the lift is to reduce the effect of the angle of attack in the ratio
28
of 1:1+5%5 "

The rolling moment

H—2e2 Vz——gf‘%a, c-z-dz
1443

i. e., the effect of induction on rolling moment is to reduce the effect of the angle of attackin
the ratio 1:1 +4b§
PROPELLER THEORY

INTRODUCTION

The purpose of & theory of the action of a propeller is to combine with Froude’s slip-
stream theory a theory of the action of the elements of the blades as airfoils. These elements
actually move along spiral paths; but it is possible to simplify the treatment by considering
the blades as & single element of area S. Often one can treat the blades as having a definite
section, and the blade area as concentrated at one point, say 70 per cent of the radius from the
axis. In Munk’s treatment of the subject he assumes that, as the flight velocity ¥ and the tip
velocity U of the blades are varied, the “shape” of the slip stream does not vary, although its
velocity v does. Under these circumstances v is obviously & linear function of V" and U so
long as the aerodynamic properties of the blade elements remain unchanged.

Under these circumstances, not simply can the efficiency of the propeller be calculated in

terms of known quantities, but also a formula for :ZiU which enables one to compute the

thrust for any value of IIZ

References—Munk—Analysis of W. F. Durand’s and E. P. Lesley’s Propeller Tests.
N. A. C. A. Technical Report No. 175. Notes on Propeller Design. N. A. C. A, Technical
Notes 91, 92, 93, 94.
FROUDE’S SLIPSTREAM THEORY

If the aircraft is moving with a veloeity ¥ through air otherwise at rest, the propeller sets
in motion backward a slip-stream whose final mean velocity may be called v. The air actually
passing through the propeller has already had imparted to it a portion of this velocity, and, by
general prmcipl% of mechanics, this additional velocity may be proved to be approximately one-
half of v. For, imagine the aireraft at rest—es in a wind-tunnel experiment—and placed in 2
stream of air having the velocity V. Let the propeller be revolving as usual, and let the velocity
of the aif through the propeller be called T'+w. Let the final velocity of the slip-stream be
called v as above. If m is the mass of air passing per unit time, the thrust of the propeller is
mw. This force acts on air mohng with veloc1ty F4p; hence the work done per unit t1me is
mu( 1V Fw).  This is equal td the incresse of-the Kinetic energy of the air, viz.:

am<rf+v)=—z_.mm=mv(v+g)-
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Therefore . o L . . o

The mass passing the propeller disk per unit time is

i(r+3)-
and therefore the thrust - Sl e o
T )
r=0(V+3)
or
T =(I I.% 2_1_01‘ ___________________________ (80)
17214’- Vz%

an absolute coefficient.
If theratio %is smell, 0"=2V?’ or %=% Cr; but this approximation can be used only for small

values of Cr. '
THE SLIP CURVE

Since, as explained above, the assumptions made justify one in writing v as a linear functwn
of V, the velocity of flight, and of U (=#nD), the tip velomty, we may write

where (g) is ﬁhe mﬁgﬁit;ude of the relatwe tlp velocn;y for whlch the shp-stream veloclty,

and therefore the thrust, is zero. Therefore, if %is plotted against TU;:, the result is a straight

line. (If in any actual propeller test, this plot is not such a straight line, it proves that the
assumptions made above do not hold for this test.) This prediction is well supported by actual

tests. The curveis called the ““slip curve” and m <= g%for constant V) is called theslip modu-

lus. In plotting the curves the experimental values are formed by writing

V=Y
= /1 —T
D2 %51}2

Munk discusses these actual curves very fully in his papers. One consequence to be noted is
that, as a result of tests already made, m is known for propellers of various types and of differ-
ent blade width, and that its value does not differ greatly from one-eighth for ordinary
propellers. Munk also shows how the effective pitch may be calculated.

THE SLIP MODULUS

With certain assumptions, the slip modulus may be calculated. Consider a propeller
with narrow blades whose sections are “ideal” and whose pitch ratio is small. With such a
propeller the influence of the slip stream on the effective angle of attack may be neglected.
Consider the total effective blade area S concentrated at the distance 0.7r from the axis.
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For small angles of attack, the thrust (. e., the liff) T=2«S % Va, where V, is the

relative velocity of the air and « is the small angle of attack. This may be calculated as follows:
UI

ve=r+ 0=+ (5]

if U"is the tangential velocity of the propeller at the point where S is considered, i. e., U"=0.7 T.

Let U, be such a tangential velocity as causes zero thrust at velocity V. If tany equals

%, and if U is increased slightly, the resulting angle of attack on the blade area S is

aur 1 (82

Therefore

and

Since Cr is small, it equals 2 — T so that 7 4DS,'£TU—, But dT” = 0.7d U; and, since before

the change d U, the thrust, and therefore » were zero, the slip stream which results from d T is

such thatv = mdT =m dol;

v

0.7

_ ! _ v 48

m = —d—UT— 0.7 o -------—---—-—---—--‘--—--—--—(83)
;.’

The fact that m is greater for propellers of greater mean blade width is confirmed by experiment.
In the caleculation given above it is assumed that the only change when the tip velocity is

increased is dU’; but, as a matter of fact, there is an additional veloc1ty dv at right angles to

’

U’, which affects the angle of attack. Writing cot ¢ =§T;’

N2 d ’ r
e -F
Further,
dv=mdU= m— au’
Hence the angle of attack
1 ar’
a=—d (U')’T(I ___.______'_-___-___-(828.)
and

m= 077?(1 2 )



132 REPORT NATIONAL ADVISORY COMMITTEE FOR AEHONAUTICS
The ratio g appearing here is the value at zero thrust, and this should be indicated by writing

(U) Solving the equation for m,

A4S
07D—-

1+.85 ﬁ(g)

The “nominal blade width ratio,” D—s is known for a propeller under test, and (V mey bede-

m = e (838)

termined ; so m= W may be calculated. (In one test, calculation gave 0.13, and observations

of the slip curve gave 0.133.)

Since this constant m may thus be considered known, T’ may be celculated for any value of

T’ and therefore Cr is known and hence T, the thrust
TORQUE

The propeller efficiency is the ratio of T'V to the power delivered, that is, to the product of
the torque @ by w, the angular velocity.

M= Qg < e e E R e e e (84)
But T'= Cr. D? Z V’ ; and a new coeffiicient (%, may be deﬁned such that
Q-G D.pT o e
Then ;
7r=—CT——D %%-_A_-__________-----__-___-.=-- (86)
Och - - - .

The power delivered may be thought of as bemg spent in three ways: (1) As absorbed in thrust,
7
i. e, Quw= TV, and therefore, since n, = 1, the corresponding Cq, = Cr- %; (2) as absorbed in

' 7
building up the slip stream, i. e, @uw =T 2: and, since 9, = -_’%, the corresponding
Coy = Cx % ZUV ; (8) as absorbed by friction, ete. Hence its corresponding Co = Cq

(Coy + G, 0x Coy = Co~ Co(1 + 5%) 77

This is equivalent to a drag coefficient of the blades which may be calculated as follows:
If S is the effective blade area, placed at a distance Q.7r from the axis, its tangential velocity is

.7 U: therefore, calling the drag coefficient (b, the drag is (> S % (.7 U)%, and the power spent
in overcoming this is

S & (10 (70)
This must equal

G- u(2a) D372

=%UU%W%
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Therefore
T ~ -
m oA e 8D
s- ( 7y
For actual propellers Munk states that O, = 0.025 approximately.
If there were no frictional loses, the efficiency would equal

TV Trv I

@+ vNT LY
: T(V+?) I A
Therefore
7 maz = ’1 prolS S )
1+5 -
27

and, since Cr is known in terms of 1{-, and 7 is known in terms of Cfr, this maximum efficiency

may be expressed in terms of T.
THE TORQUE SLIP CURVE

The slip curve described previously is derived from knowledge of the thrust, and is
therefore more useful in the discussion of data obtained from model tests than in the case of
tests in actual flight, for in the latter the thrust is an indefinite quantity—so far as theory is con-
cerned. The theoretical value of the slip modulus, m, is derived only by making obvious
assumptions, and, rather than trying to improve the theory, it is better to compare the theoreti-
cal value with observed values, obtained from the study of actual slip curves for propellers in
flight. Again, in studying the properties of different propellers in flight, it is better to start with
the knowledge of the torque or power and to deduce a different type of slip curve, because the
power is much more definite than the thrust. Further, propellers are designed to absorb a given
horsepower at & certain number of revolutions. Consequently, Munk describes a new slip
modulus referring to the torque as modified by the 1nterference of the fuselage, etc.

Define a power coefficient .-

P

C’;=-——;—T___- e -(89)
T T2)2 2
T'gI D 7
Then, since _
Cr=p T _ -
Lyape X
3 12D 7
and, since in the absence of viscosity the efficiency
TV _ 1
P ! + v

¥
the “ideal”’ coefficient would have the value

01' (1 +% %r

The actual coefficient is of course larger. Then in terms of the actual coefficients C» and Cr
define a slip velocity v by the equation

0,—0,(1+2T, e (90)
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In other words, v’ is derived from the knowledge of the torque, as v is from that of the thrust.
v’ is slightly greater than v.

The curve of % % plotted agamst 'Ty is called the “ torque shp curve,”’ ‘and by studymg the two

curves, that of ¥ v and that of 2 T7’ for actual propellers in flight, knowledge may be obtained which
will enable the better application of data from model tests. . .
Inorder to obta.m the values of % v from measured quantities, it is necessary toderive a relation

between it and Cr. From the two equations S

Co=(14%) =1 and o= G (145 5) (V) 22 (3) +2(%) cornnnno)

In N. A. C. A. Report No. 183, Munk gives values of the solution of this equation, so that values

r
of UT, may be obtained, and then the corresponding torque slip curves,

V‘ml (TU’)l

may be plotted. These may then be compared with the thrust slip curves,

porl-(7))

in which %m obtained from a knowledge of 7.  _.

Munk made a detailed study of the performance of certain propellers as published in the
British R. & M. Nos. 586 and 704, and deduced for comparatlve purposes the following
data:

1. Curves for m and m’.

2. Calculation of m from the theoretical formula, and the value of the correction factor

Mobs. . (This varied from 0,97 to 1.13.)
Megre.

3. Mean effective angle of attack, at 0.7 radlus, a=cot™ (07U> Also the observed

value. The difference is to be attributed to the effect of the camber of the blade sectian and to
the elastic torsion of the blades.

These formulas and test data. are, of course, most 1mportant in the study of sets of pro-
pellers and of the same propeller when attached to different engines; but they also are of direct
use to the engineer who wishes to design a new propeller.



